Resilience of flexible perovskite solar cells employing a novel PTAA-like HTM against atmospheric neutron irradiation

<u>Giulio Koch</u>¹, Daniel Augusto Machado de Alencar², Cullen Chosy^{3,4}, Amanda Generosi⁵, Flavia Righi Riva⁵, Samyuktha Noola², Farshad Jafarzadeh¹, Kyle Frohna^{3,4}, Matteo Bonomo², Pierluigi Quagliotto², Paolo Rech⁶, Carlo Cazzaniga⁷, Marco Ottavi^{8,9}, Francesca De Rossi¹, Barbara Paci⁵, Samuel D. Stranks^{3,4}, Claudia Barolo^{10,11} and Francesca Brunetti*¹

¹CHOSE, Dep. of Electronic Engineering, University of Rome Tor Vergata 00133, Italy.

²Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, Università Degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy.

³Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.

⁴Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.

⁵SpecX-Lab ISM-CNR, Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100 Rome 00133, Italy

⁶HiCREST, Department of Industrial Engineering, University of Trento, 38123 Povo, Italy.

⁷UKRI-STFC, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom.

⁸Dep. of Electronic Engineering, University of Rome Tor Vergata 00133, Italy.

⁹CAES, University of Twente, Enschede, 7522 NB, The Netherlands.

¹⁰ICxT Interdepartmental Centre, University of Turin, Lungo Dora Siena 100, 10153, Torino, Italy

¹¹Istituto di Scienza, Tecnologia e Sostenibilità per lo sviluppo dei Materiali Ceramici (ISSMC-CNR), Via Granarolo 64, 48018, Faenza, RA, Italy

*Francesca.brunetti@uniroma2.it

Keywords: atmospheric neutrons, flexible perovskite solar cells, hole transport materials, PTAA, radiation hardness **Abstract:**

Flexible perovskite solar cells (f-PSC) are excellent candidates for space applications, thanks to record efficiencies of 25.05% [1], and power densities as high as 30 W/g [2]. Here, we synthesized a new Hole Transport Material (HTM) in which PTAA is copolymerized with a phenothiazine, and studied degradation damages induced by atmospheric-like neutrons (5*10° n/cm², ~400 times the yearly fluence in LEO) in f-PSC employing PTAA and our HTM. Both HTMs showed good resilience against the radiation: devices based on our in-house synthesized HTM showed little to no loss in efficiency, while PTAA counterparts still retained ~80% of their initial efficiency. In all cases the V_{OC} of our devices remained stable, pointing to minimal non-radiative recombination losses induced by neutrons. Such observation was corroborated by microscopic photoluminescence mapping on perovskite samples, which showed minimal changes in the spatial distribution of photoluminescence over the observed areas. Crystallographic analysis showed that while the perovskite crystallinity in general remains high, unbound PbI₂ defects in PTAA devices increase upon radiation, while our in-house alternative showed a consistently lower PbI₂ peak before and after the irradiation, suggesting that the modified HTM can effectively passivate the perovskite interface and stabilize it against such defects formation.

Conflicts of Interest

No conflict of interest.

Funding

Italian Space Agency: ENFORSPACE; MUR Program, Grant/Award Number: CUPD13C22003520001; ISIS@MACH: Giunta Regionale n. G10795;

HORIZON-EIC-PATHFINDERCHALLENGES: JUMP INTO SPACE, Grant/Award Number: 101162377

References

- [1] N. Ren *et al.*, "25% Efficiency flexible perovskite solar cells via controllable growth of SnO2," in *iEnergy*, vol. 3, no. 1, pp. 39-45, March 2024
- [2] Wu, J., Chen, P., Xu, H. *et al.* Ultralight flexible perovskite solar cells. *Sci. China Mater.* **65**, 2319–2324 (2022). https://doi.org/10.1007/s40843-022-2075-7