Solution-grown single-crystalline perovskite nuclear batteries with 10% power conversion efficiency.

Sergii Yakunin^{1,2}*, Kostiantyn Sakhatskyi^{1,2}, Maksym V. Kovalenko^{1,2}*,

- ¹ Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- ² Laboratory for Thin Films and Photovoltaics, Empa Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland yakunins@ethz.ch, mvkovalenko@ethz.ch

Keywords: metal halide perovskite, energy harvesting, nuclear batteries.

Abstract:

Nuclear batteries offer exceptional longevity and energy density, ideal for autonomous applications in spacecraft, pacemakers and remote scientific stations. However, no radiation-converting material currently combines high efficiency, low cost, and scalability. For instance, diamond-based betavoltaic cells with a champion efficiency of 28% are expensive and limited to a submillimetre scale. In contrast, cost-effective radioisotope thermoelectric generators reach efficiencies around 6-7%, but require high working temperatures and large volumes. Here, we fabricated radiovoltaic (RV) cells from methylammonium-formamidinium lead iodide (MAFAPbI₃) perovskite single crystals grown by a facile inverse temperature crystallisation method. The best-performing cell achieves a power conversion efficiency of 10.1% under X-ray irradiation with energies up to 20 keV, setting a record value for X-ray/gamma-voltaic, outperforming most RV semiconductor cells and approaching the Shockley–Queisser limits for X-ray radiation of 12.8%, calculated for the MAFAPbI₃ bandgap. These results pave the path toward low-cost, highly efficient perovskite-based nuclear batteries.

Conflicts of Interest

Authors declare no conflict of interest.

Funding

ETH+ Project SynMatLab: Laboratory for Multiscale Materials Synthesis, by the Ukrainian-Swiss Joint Research Programme grant #IZURZ2_224877, and also by the Swiss Innovation Agency (Innosuisse) under grant agreement 46894.1 IP-ENG.