

Designing All-Perovskite Tandem Solar Cells for Space Applications

Zhaoning Song^{*}, Haoran Chen, Tingting Zhu, Kshitiz Dolia, Abasi Abudulimu, Katakumbura Nadeesha, Yeming Xian, Xiaoming Wang, Tamanna Mariam, Adam B. Phillips, Michael J. Heben, Randy J Ellingson, and Yanfa Yan

Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, The University of Toledo, OH 43606, USA

^{*}zhaoning.song@utoledo.edu

Keywords: All-perovskite tandem solar cells, device engineering, space photovoltaics, radiation tolerance,

Abstract:

Metal halide perovskites are ideal candidates for producing lightweight, high-specific-power, and cost-effective tandem solar cells for space power applications due to their outstanding photoelectrical properties, tunable bandgaps, low-temperature processing, and compatibility with flexible substrates. Here, we discuss the design and development of all-perovskite tandem solar cells for space power applications. All-perovskite tandem solar cells are fabricated by integrating a wide-bandgap (~1.8 eV) Pb-based mixed-halide (Br-I) perovskite top subcell with a narrower-bandgap (~1.2 eV) divalent metal alloyed (Pb-Sn) iodide perovskite bottom subcell. Tailoring the halide perovskite composition and thickness for each subcell, their heterointerfaces, the interconnection, the substrate, and electrode materials enables us to optimize the photovoltaic performance of these tandem devices with respect to the terrestrial (AM1.5G) and space (AM0) solar spectra. We will discuss some preliminary space-qualified assessment results of all-perovskite tandem solar cells and discuss key challenges facing these devices. Finally, an outlook will be provided on the research directions necessary to realize the full potential of perovskite tandem devices as reliable and efficient power sources for space applications.

Conflicts of Interest

The authors declare no conflict of interest.

Funding

This material is based on research sponsored by Air Force Research Laboratory under agreements FA9453-19-C-1002, FA9453-21-C-0056, and FA9453-24-C-X004, and by the U.S. DOE's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office award number DE-EE0008753 and Hydrogen and Fuel Cell Technologies Office award numbers DE-EE0008837 and DE-EE0010740. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views expressed are those of the authors and do not reflect the official guidance or position of the United States Government, the Department of Defense or of the United States Air Force. The appearance of external hyperlinks does not constitute endorsement by the United States Department of Defense (DoD) of the linked websites, or the information, products, or services contained therein. The DoD does not exercise any editorial, security, or other control over the information you may find at these locations. Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL-2025-3982.